F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Vector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 554    Accepted Submission(s): 142


Problem Description
Given four three-dimensional vectors $A_1, A_2, A_3, A_4$, determine whether there exist non-negative real numbers $x_1, x_2, x_3$ that satisfy the following equation:

$$x_1A_1 + x_2A_2 + x_3A_3 = A_4$$

Here, $A_i = (a_{i1}, a_{i2}, a_{i3})$ represents the components of the three-dimensional vector $A_i$.

For example, $A_1=(3,4,4)$, $A_2=(4,3,0)$, $A_3=(2,3,2)$, $A_4=(9,10,6)$ has a non-negative solution because $A_1+A_2+A_3 = A_4$.
 

Input
The first line contains an integer $T$ $(1 \leq T \leq 1000)$, representing the number of test cases.

Each test case consists of a single line containing $12$ integers in $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, a_{41}, a_{42}, a_{43}(0 \leq a_{ij} \leq 10^4,1\leq i \leq 4,1\leq j \leq 3)$, representing the components of the four three-dimensional vectors $A_1, A_2, A_3, A_4$.
 

Output
For each test case, output a single line containing either "YES" or "NO", indicating whether a non-negative solution exists.

If a non-negative solution exists, output "YES"; otherwise, output "NO".
 

Sample Input
2 3 4 4 4 3 0 2 3 2 9 10 6 0 3 1 0 1 3 4 0 4 4 1 10
 

Sample Output
YES NO
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 21:50:02, Gzip enabled