F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Simple Set Problem

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1847    Accepted Submission(s): 536


Problem Description
Given $k$ non empty multiple sets, each multiple set only contains integers with absolute values not exceeding $10^{9}$.

It is required to select exactly one number from each multiple set to form an array $(a_1,a_2,\dots,a_k)$ with a length of $k$.

Assuming $d=\max(a_1, a_2,\dots,a_k) - \min(a_1, a_2,\dots,a_k)$.Please calculate the minimum $d$.
 

Input
Each test contains multiple test cases.The first line of input contains a single integer $t (1 \leq t \leq 10^{6})$---the number of test cases.The description of test cases follows.

The first line of each test case contains a single integer $k(1 \leq k \leq 10^{6})$ —— the number of multiple sets.

The following $k$ lines of each test case first read in a parameter $c_i$ —— indicating the size of the $i$-th multiple set, followed by $c_i$ integers with absolute values not exceeding $10^{9}$ —— indicating the elements of the $i$-th multiple set.

Guarantee that $\sum_{i=1}^{k}{c_i}$ for each test case does not exceed $10^{6}$, the sum of $\sum_{i=1}^{k}{c_i}$ for all test cases does not exceed $4\times 10^{6}$.
 

Output
For each testcase, output an integer representing the answer, which is the minimum $d$.
 

Sample Input
3 2 1 6 3 -7 7 10 4 9 -5 -9 2 8 5 4 3 3 8 2 10 8 1 -7 3 1 6 10 1 1 9
 

Sample Output
1 15 0
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 16:49:15, Gzip enabled