F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

A Simple Problem

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 50    Accepted Submission(s): 21


Problem Description
You have a sequence $A$ of length $n$ and a positive integer $k$. Initially, all elements in $A$ are set to $0$.
Now there are $q$ operations, these operations can be divided into two types.
$1$ $l$ $r$ $x$ $: \forall i \in [l,r] A_i = A_i + x$
$2$ $l$ $r$ $:$ Find $\min\limits_{i=l}^{r-k+1} ( \max\limits_{j=i}^{i+k-1} A_j )$ $(r-l+1 \geq k)$
 

Input
The first line contains an integer $T (T \leq 5)$, denoting the number of test cases.
Each test case contains $q + 2$ lines
The first line contains three integer $n, k(2 \leq k \le n \leq 5 \times 10^8)$ and $q(1 \leq q \leq 10^5)$.
The next $q$ lines describe operations of two types:
$1$ $l$ $r$ $x$ $: \forall i \in [l,r] A_i = A_i + x$ $(|x| \leq 10^4)$
$2$ $l$ $r$ $:$ Find $\min\limits_{i=l}^{r-k+1} ( \max\limits_{j=i}^{i+k-1} A_j )$ $(r-l+1 \geq k)$
It is guaranteed that the sum of $q$ won't exceed $2 \times 10^5$.
 

Output
For each operation of type $2$, output the answer in a single line.
 

Sample Input
2 5 3 3 1 2 5 2 1 3 4 -1 2 1 4 10 4 10 1 1 6 6 1 3 8 -6 2 2 6 1 4 8 -8 1 4 9 4 1 4 5 -7 2 4 8 1 6 7 8 1 1 3 -2 2 3 7
 

Sample Output
2 0 -4 4
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 16:02:47, Gzip enabled