|
||||||||||
FunctionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 118 Accepted Submission(s): 30 Problem Description Define function $f(x)= \prod \limits_{i=1}^{len} (x\%10^i)\%(x+1)$, where $len$ represents the digit length of $x$. For example, $f(1023)=(3*23*23*1023)\%1024$. Define function $g(n,m)= \begin{cases} f(g(n,m-1))& \text{m>1}\\ f(n)& \text{m=1} \end{cases}$. For example, $g(n,2)=f(f(n))$. You are given $n$ and $m$, please calculate $\sum\limits_{i=1}^m g(n,i)$. Input The input consists of multiple test cases. The first line contains an integer $T$ $(1 \leq T \leq 20)$ — the number of test cases. The description of the test cases follows. The only line contains two integers $n,m$ $(1 \leq n,m \leq 10^9)$ . Output For each test case, print the answer. Sample Input
Sample Output
Source | ||||||||||
|