F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

A Very Easy Math Problem

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 523    Accepted Submission(s): 238


Problem Description
Given you $n,x,k$ , find the value of the following formula:

$$
\sum_{a_1=1}^{n}\sum_{a_2=1}^{n}\ldots \sum_{a_x=1}^{n}\left (\prod_{j=1}^{x}a_j^k\right )f(\gcd(a_1,a_2,\ldots ,a_x))\cdot \gcd(a_1,a_2,\ldots ,a_x)
$$

$\gcd(a_1,a_2,\ldots ,a_n)$ is the greatest common divisor of $a_1,a_2,...,a_n$.

The function $f(x)$ is defined as follows:

If there exists an ingeter $k\ (k>1)$ , and $k^2$ is a divisor of $x$,
then $f(x)=0$, else $f(x)=1$.
 

Input
The first line contains three integers $t,k,x\ (1\le t \le 10^4,1\le k\le 10^9,1\le x\le 10^9)$

Then $t$ test cases follow. Each test case contains an integer $n\ (1\le n\le 2\times 10^5)$
 

Output
For each test case, print one integer ¡ª the value of the formula.

Because the answer may be very large, please output the answer modulo $10^9+7$.
 

Sample Input
3 1 3 56 5 20
 

Sample Output
139615686 4017 11554723
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 06:58:05, Gzip enabled