|
||||||||||
Angle BeatsTime Limit: 20000/15000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 3277 Accepted Submission(s): 583 Problem Description Given n points $P_1$, $P_2$, .... , $P_n$ on 2D plane and q queries. In i-th query, a point $A_i$ is given, and you should determine the number of tuples (u, v) that 1 $\leq$ u < v $\leq$ n and $A_i$ , $P_u$, $P_v$ form a non-degenerate right-angled triangle. Input The first line contains two positive integers n, q (2 ¡Ü n ¡Ü 2 000, 1 ¡Ü q ¡Ü 2 000), denoting the numberof given points and the number of queries. Next n lines each contains two integers xi , yi (|xi|, |yi| ¡Ü $10^9$), denoting a given point Pi. Next q lines each contains two integers xi , yi (|xi|, |yi| ¡Ü $10^9$), denoting a query point Ai. It is guaranteed that the input n + q points are all pairwise distinct. Output Output q lines each contains a non-negative integer, denoting the answer to corresponding query. Sample Input
Sample Output
Hint For query (0, 0), the 4 right-angled triangles are � {(0, 0),(0, 1),(1, 0)} � {(0, 0),(0, 1),(-1, 0)} � {(0, 0),(0,-1),(1, 0)} � {(0, 0),(0,-1),(-1, 0)} For query (1, 1), the 3 right-angled triangles are � {(1, 1),(0, 1),(1, 0)} � {(1, 1),(0, 1),(0,-1)} � {(1, 1),(1, 0),(-1, 0)} Source | ||||||||||
|