|
||||||||||
TreeTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 3551 Accepted Submission(s): 2109 Problem Description Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem. Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty. Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size. Input The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases. For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree. The summation of n in input is smaller than or equal to 200000. Output For each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek. Sample Input
Sample Output
Source | ||||||||||
|