F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Pythagoras

Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 465    Accepted Submission(s): 243


Problem Description
Given a list of integers $a_0,a_1,a_2,\cdots,a_{2^k-1}$. Pythagoras triples over $10^9$ are all solutions of $x^2+y^2=z^2$ where $x,y$ and $z$ are constrained to be positive integers less than or equal to $10^9$. You are to compute the sum of $a_{y~mod~2^k}$ of triples $(x,y,z)$ such that $x<y<z$ and they are relatively prime, i.e., have no common divisor larger than $1$.
 

Input
The first line is an integer $T~(1\le T\le 3)$ indicating the total number of cases.
For each test case the first line is the integer $k~(1\le k\le 17)$.
The second line contains $2^k$ integers corresponding to $a_0$ to $a_{2^k-1}$, where each $a_i$ satisfies $1\le a_i\le 255$.
 

Output
For each case output the sum of $a_{y~mod~2^k}$ in a line.
 

Sample Input
3 2 0 0 0 1 2 1 0 0 0 2 1 1 1 1
 

Sample Output
39788763 79577506 159154994
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 07:55:04, Gzip enabled