|
||||||||||
Function CountingTime Limit: 4000/2000 MS (Java/Others) Memory Limit: 153428/153428 K (Java/Others)Total Submission(s): 142 Accepted Submission(s): 65 Problem Description In this problem, we count the number of function f(x) satisfies below details. 1.f: M¡úM, ( M={-n,-n+1,-n+2,¡,-1,0,1,¡,n} ) 2.$\forall x¡ÊM, f_k (x)= -x,( f_0 (x)=x,f_i= f(f_{i-1} ) (i= 1,2,¡) )$ 3.$\forall x¡ÊM, |(|f(x)|-|x|)|¡Ü2$ Input The first line of input contains an integer T (1 <= T <= 100) , the number of test cases. Each test case contains a pair of integers n, k (n * k <= $10^9$), the upper limit of the set M and degree of f. The total sum of n * k over all test cases does not exceed 4e9. Output For each test case output the answer % 1000000007. Sample Input
Sample Output
Hint If k = 1, only one function f(x) = -x exists. If n = k = 2, two functions exist. f: (-2, -1, 0, 1, 2) -> (1, -2, 0, 2, -1) or (-1, 2, 0, -2, 1). Source | ||||||||||
|