F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

All Kill

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 139    Accepted Submission(s): 35


Problem Description
Give nonnegative integers $x_{1¡­n}$ which are less than $32677$, calculate $y_{i,j}=x_i\times x_j\mod32677$. HazelFan wants to know how many sextuples $(a,b,c,d,e,f)$ are there, satisfies $\gcd(y_{a,b},y_{c,d})=\gcd(y_{c,d},y_{e,f})=\gcd(y_{e,f},y_{a,b})=1$, module $2^{30}$.
 

Input
The first line contains a positive integer $T(1\leq T\leq5)$, denoting the number of test cases.
For each test case:
The first line contains a positive integer $n(1\leq n\leq2\times10^5)$.
The second line contains $n$ nonnegative integers $x_{1...n}(0\leq x_i<32677)$.
 

Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
 

Sample Input
2 1 1 5 1 2 3 4 5
 

Sample Output
1 1087
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 10:02:35, Gzip enabled