|
||||||||||
Counting DivisorsTime Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 6868 Accepted Submission(s): 2353 Problem Description In mathematics, the function $d(n)$ denotes the number of divisors of positive integer $n$. For example, $d(12)=6$ because $1,2,3,4,6,12$ are all $12$'s divisors. In this problem, given $l,r$ and $k$, your task is to calculate the following thing : \begin{eqnarray*} \left(\sum_{i=l}^r d(i^k)\right)\bmod 998244353 \end{eqnarray*} Input The first line of the input contains an integer $T(1\leq T\leq15)$, denoting the number of test cases. In each test case, there are $3$ integers $l,r,k(1\leq l\leq r\leq 10^{12},r-l\leq 10^6,1\leq k\leq 10^7)$. Output For each test case, print a single line containing an integer, denoting the answer. Sample Input
Sample Output
Source | ||||||||||
|