F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Easy Homework

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 151    Accepted Submission(s): 16


Problem Description
Let’s consider a sequence $\{f(n)\}$ which satisfies following 2 conditions.

1.$f(0) = 0, f(1) = 1$.
2.$f(n)=Af(n-1)+f(n-2)$,for any integer $n > 1$.
Here A is a constant integer.

Given a prime $p$ and an integer $x(0\leq x\leq p)$ , your task is to calculate $|\{n|L\leq n\leq R,f(n)\ mod\ p = x\}|$ , i.e. the number of indices $n$ between $L$ and $R$ such as $f(n)\ mod\ p = x$ .
 

Input
There are several test cases.

The first line of the input contains an integer $T(1\leq T\leq 120)$ , the number of test cases.

Each of the next $T$ lines contains 5 integers, $A,p,x,L,R(0\leq A < 10^9,2<p<10^9,0\leq x < p,1\leq L\leq R \leq 10^{18})$
 

Output
Print $T$ lines, containing the answer to the problem.
 

Sample Input
2 1 5 0 1 5 2 29 12 3 6
 

Sample Output
1 2
 

Author
金策工业综合大学(DPRK)
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 10:37:44, Gzip enabled