|
||||||||||
Digit-SumTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1836 Accepted Submission(s): 656 Problem Description Let $S(N)$ be digit-sum of $N$, i.e $S(109)=10,S(6)=6$. If two positive integers $a,b$ are given, find the least positive integer $n$ satisfying the condition $a\times S(n)=b\times S(2n)$. If there is no such number then output 0. Input The first line contains the number of test caces $T(T\leq 10)$. The next $T$ lines contain two positive integers $a,b(0<a,b<101)$. Output Output the answer in a new line for each test case. Sample Input
Sample Output
Source | ||||||||||
|