|
||||||||||
DZY Loves PartitionTime Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 2110 Accepted Submission(s): 896 Problem Description DZY loves partitioning numbers. He wants to know whether it is possible to partition $n$ into the sum of exactly $k$ distinct positive integers. After some thinking he finds this problem is Too Simple. So he decides to maximize the product of these $k$ numbers. Can you help him? The answer may be large. Please output it modulo $10^9+7$. Input First line contains $t$ denoting the number of testcases. $t$ testcases follow. Each testcase contains two positive integers $n,k$ in a line. ($1\le t\le 50, 2\le n,k \le 10^9$) Output For each testcase, if such partition does not exist, please output $-1$. Otherwise output the maximum product mudulo $10^9 + 7$. Sample Input
Sample Output
Hint In 1st testcase, there is no valid partition. In 2nd testcase, the partition is $3=1+2$. Answer is $1\times 2 = 2$. In 3rd testcase, the partition is $9=2+3+4$. Answer is $2\times 3 \times 4 = 24$. Note that $9=3+3+3$ is not a valid partition, because it has repetition. In 4th testcase, the partition is $666666=333332+333334$. Answer is $333332\times 333334= 111110888888$. Remember to output it mudulo $10^9 + 7$, which is $110888111$. Source | ||||||||||
|