|
||||||||||
Primitive RootsTime Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1950 Accepted Submission(s): 537 Problem Description We say that integer x, 0 < x < n, is a primitive root modulo n if and only if the minimum positive integer y which makes xy = 1 (mod n) true is ¦Õ(n) .Here ¦Õ(n) is an arithmetic function that counts the totatives of n, that is, the positive integers less than or equal to n that are relatively prime to n. Write a program which given any positive integer n( 2 <= n < 1000000) outputs all primitive roots of n in ascending order. Input Multi test cases. Each line of the input contains a positive integer n. Input is terminated by the end-of-file seperator. Output For each n, outputs all primitive roots of n in ascending order in a single line, if there is no primitive root for n just print -1 in a single line. Sample Input
Sample Output
Source | ||||||||||
|