F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Goffi and GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2443    Accepted Submission(s): 907


Problem Description
Goffi is doing his math homework and he finds an equality on his text book: \(\gcd(n - a, n) \times \gcd(n - b, n) = n^k\).

Goffi wants to know the number of (\(a, b\)) satisfy the equality, if \(n\) and \(k\) are given and \(1 \le a, b \le n\).

Note: \(\gcd(a, b)\) means greatest common divisor of \(a\) and \(b\).
 

Input
Input contains multiple test cases (less than 100). For each test case, there's one line containing two integers \(n\) and \(k\) (\(1 \le n, k \le 10^9\)).
 

Output
For each test case, output a single integer indicating the number of (\(a, b\)) modulo \(10^9+7\).
 

Sample Input
2 1 3 2
 

Sample Output
2 1
 

Hint

For the first case, (2, 1) and (1, 2) satisfy the equality.
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2025 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2025-01-28 12:01:14, Gzip enabled