F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

Maximum Random Walk

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1284    Accepted Submission(s): 689


Problem Description
Consider the classic random walk: at each step, you have a 1/2 chance of taking a step to the left and a 1/2 chance of taking a step to the right. Your expected position after a period of time is zero; that is, the average over many such random walks is that you end up where you started. A more interesting question is what is the expected rightmost position you will attain during the walk.
 

Input
The first line of input contains a single integer P, (1 <= P <= 15), which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input consisting of four space-separated values. The first value is an integer K, which is the data set number. Next is an integer n, which is the number of steps to take (1 <= n <= 100). The final two are double precision floating-point values L and R
which are the probabilities of taking a step left or right respectively at each step (0 <= L <= 1, 0 <= R <= 1, 0 <= L+R <= 1). Note: the probably of not taking a step would be 1-L-R.
 

Output
For each data set there is a single line of output. It contains the data set number, followed by a single space which is then followed by the expected (average) rightmost position you will obtain during the walk, as a double precision floating point value to four decimal places.
 

Sample Input
3 1 1 0.5 0.5 2 4 0.5 0.5 3 10 0.5 0.4
 

Sample Output
1 0.5000 2 1.1875 3 1.4965
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-22 12:13:19, Gzip enabled