|
||||||||||
A Famous EquationTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 817 Accepted Submission(s): 300 Problem Description Mr. B writes an addition equation such as 123+321=444 on the blackboard after class. Mr. G removes some of the digits and makes it look like ¡°1?3+??1=44?¡±. Here ¡°?¡± denotes removed digits. After Mr. B realizes some digits are missing, he wants to recover them. Unfortunately, there may be more than one way to complete the equation. For example ¡°1?3+??1=44?¡± can be completed to ¡°123+321=444¡± , ¡°143+301=444¡± and many other possible solutions. Your job is to determine the number of different possible solutions. Input Each test case describes a single line with an equation like a+b=c which contains exactly one plus sign ¡°+¡± and one equal sign ¡°=¡± with some question mark ¡°?¡± represent missing digits. You may assume a, b and c are non-negative integers, and the length of each number is no more than 9. In the other words, the equation will contain three integers less than 1,000,000,000. Output For each test case, display a single line with its case number and the number of possible solutions to recover the equation. Sample Input
Sample Output
Hint There are three solutions for the first case: 7+10=17, 7+11=18, 7+12=19 There is only one solution for the second case: 11+11=22 Note that 01+21=22 is not a valid solution because extra leading zeros are not allowed. Source | ||||||||||
|