|
||||||||||
Rectangles Too!Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 871 Accepted Submission(s): 320 Problem Description A rectangle in the Cartesian plane is specied by a pair of coordinates (x1 , y1) and (x2 , y2) indicating its lower-left and upper-right corners, respectively (where x1 ¡Ü x2 and y1 ¡Ü y2). Given a pair of rectangles,A = ((xA1 , yA1 ), (xA2 ,yA2 )) and B = ((xB1 , yB1 ), (xB2 , yB2 )), we write A ¡Ü B (i.e., A "precedes" B), if xA2 < xB1 and yA2 < yB1 :In this problem, you are given a collection of rectangles located in the two-dimension Euclidean plane. Find the length L of the longest sequence of rectangles (A1,A2,¡,AL) from this collection such that A1 ¡Ü A2 ¡Ü ¡ ¡Ü AL. Input The input file will contain multiple test cases. Each test case will begin with a line containing a single integer n (where 1 ¡Ü n ¡Ü 100000), indicating the number of input rectangles. The next n lines each contain four integers xi1 ,yi1 ,xi2 ,yi2 (where -1000000 ¡Ü xi1 ¡Ü xi2 ¡Ü 1000000, -1000000 ¡Ü yi1 ¡Ü yi2 ¡Ü 1000000, and 1 ¡Ü i ¡Ü n), indicating the lower left and upper right corners of a rectangle. The end-of-file is denoted by asingle line containing the integer 0. Output For each input test case, print a single integer indicating the length of the longest chain. Sample Input
Sample Output
Source | ||||||||||
|