F.A.Q
Hand In Hand
Online Acmers
Problem Archive
Realtime Judge Status
Authors Ranklist
 
     C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
    DIY | Web-DIY beta
Author ID 
Password 
 Register new ID

S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13976    Accepted Submission(s): 5628


Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


  The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

  The players take turns chosing a heap and removing a positive number of beads from it.

  The first player not able to make a move, loses.


Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


  Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

  If the xor-sum is 0, too bad, you will lose.

  Otherwise, move such that the xor-sum becomes 0. This is always possible.


It is quite easy to convince oneself that this works. Consider these facts:

  The player that takes the last bead wins.

  After the winning player's last move the xor-sum will be 0.

  The xor-sum will change after every move.


Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
 

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ¡Ü 100 describing the size of S, followed by k numbers si (0 < si ¡Ü 10000) describing S. The second line contains a number m (0 < m ¡Ü 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ¡Ü 100) describing the number of heaps and l numbers hi (0 ¡Ü hi ¡Ü 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 

Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 

Sample Input
2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0
 

Sample Output
LWW WWL
 

Source
 

Statistic | Submit | Discuss | Note
Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2024 HDU ACM Team. All Rights Reserved.
Designer & Developer : Wang Rongtao LinLe GaoJie GanLu
Total 0.000000(s) query 1, Server time : 2024-11-23 15:56:26, Gzip enabled