Turing Tree
Time Limit : 6000/3000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 0 Accepted Submission(s) : 0
Font: Times New Roman | Verdana | Georgia
Font Size: ¡û ¡ú
Problem Description
After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because Turing Tree could easily have the solution. As well, wily 3xian made lots of new problems about intervals. So, today, this sick thing happens again...
Now given a sequence of N numbers A1, A2, ..., AN and a number of Queries(i, j) (1¡Üi¡Üj¡ÜN). For each Query(i, j), you are to caculate the sum of distinct values in the subsequence Ai, Ai+1, ..., Aj.
Now given a sequence of N numbers A1, A2, ..., AN and a number of Queries(i, j) (1¡Üi¡Üj¡ÜN). For each Query(i, j), you are to caculate the sum of distinct values in the subsequence Ai, Ai+1, ..., Aj.
Input
The first line is an integer T (1 ¡Ü T ¡Ü 10), indecating the number of testcases below.
For each case, the input format will be like this:
* Line 1: N (1 ¡Ü N ¡Ü 30,000).
* Line 2: N integers A1, A2, ..., AN (0 ¡Ü Ai ¡Ü 1,000,000,000).
* Line 3: Q (1 ¡Ü Q ¡Ü 100,000), the number of Queries.
* Next Q lines: each line contains 2 integers i, j representing a Query (1 ¡Ü i ¡Ü j ¡Ü N).
For each case, the input format will be like this:
* Line 1: N (1 ¡Ü N ¡Ü 30,000).
* Line 2: N integers A1, A2, ..., AN (0 ¡Ü Ai ¡Ü 1,000,000,000).
* Line 3: Q (1 ¡Ü Q ¡Ü 100,000), the number of Queries.
* Next Q lines: each line contains 2 integers i, j representing a Query (1 ¡Ü i ¡Ü j ¡Ü N).
Output
For each Query, print the sum of distinct values of the specified subsequence in one line.
Sample Input
2 3 1 1 4 2 1 2 2 3 5 1 1 2 1 3 3 1 5 2 4 3 5
Sample Output
1 5 6 3 6
Author
Source
HDOJ Monthly Contest ¨C 2010.03.06