Max Sum Plus Plus
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 72 Accepted Submission(s) : 17
Font: Times New Roman | Verdana | Georgia
Font Size: ¡û ¡ú
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ¡Ü x ¡Ü n ¡Ü 1,000,000, -32768 ¡Ü Sx ¡Ü 32767). We define a function sum(i, j) = Si + ... + Sj (1 ¡Ü i ¡Ü j ¡Ü n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ¡Ü iy ¡Ü jx or ix ¡Ü jy ¡Ü jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ¡Ü x ¡Ü m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ¡Ü x ¡Ü n ¡Ü 1,000,000, -32768 ¡Ü Sx ¡Ü 32767). We define a function sum(i, j) = Si + ... + Sj (1 ¡Ü i ¡Ü j ¡Ü n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ¡Ü iy ¡Ü jx or ix ¡Ü jy ¡Ü jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ¡Ü x ¡Ü m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.